Jonathan

Register to add an answer

answers: 1

244 cents

Answer:

The polynomial given is f(x) = x^20 - x^19 + 3x^18 - 2x^17 - x^16 + 3x^15 + x^14 + 2x^10 - x^9 + x^6 - 8x^4 + x^3 - 1

f(x) = +x^20 - x^19 + 3x^18 - 2x^17 - x^16 + 3x^15 + x^14 + 2x^10 - x^9 + x^6 - 8x^4 + x^3 - 1

The sign changes are: +-, -+, +-, --, -+, ++, ++, +-, -+, +-, -+, +-

Using Descartes' rule of signs as there are 9 sign changes , there can be a maximum of 9 positive real roots.

f(-x) = +x^20 + x^19 + 3x^18 + 2x^17 + x^16 - 3x^15 + x^14 + 2x^10 - x^9 + x+6 - 8x^4 - x^3 - 1

Here, the sign changes are: ++, ++, ++, ++, +-, -+, ++, +-, -+, +-, --, --

As there are 5 sign changes, there can be a maximum of 5 negative real roots.

**The given polynomial can have a maximum 9 positive real roots and 5 negative real roots.**

332

Barad

For answers need to register.

Contacts

mail@expertinstudy.com

Feedback

Expert in study

About us

For new users

For new experts

Terms and Conditions